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Abstract: The interaction between two conjugated molecules with overlapping p orbitals is described in terms of 
the ir electrons of the separate systems. New (mfermolecular) orbitals are built out of the interacting molecular 
orbitals. The interaction energy is expanded in terms of the small overlap S, and analytical energy expressions 
are obtained in terms of S„' between pairs of atoms r, r' and of an interaction integral r\„>. For molecules in 
their ground state, the total energy of interaction is the sum of a repulsion energy due to the "exclusion shell" around 
each carbon atom and an attractive energy due to the mixing between occupied orbitals on one molecule and un­
occupied orbitals on the other. Both of these terms are second order in the overlap. If one molecule is excited, 
an additional, first-order energy arises from the stabilization of the excited electron and the destabilization of the 
hole. The general principle is established that a thermal reaction A + B is favored if there is strong interaction 
between the top occupied orbital(s) on one molecule and the lowest unoccupied orbital(s) on the other (and con­
versely). On the other hand, a photochemical reaction A* + B is favored if the orbital of the excited electron 
(generally the lowest previously unoccupied orbital of A) interacts strongly with an orbital of neighboring or slightly 
higher energy (generally the lowest unoccupied orbital of B), equally, if the orbital of the hole (top occupied orbi­
tal of A) interacts strongly with an orbital of neighboring or slightly lower energy (generally the top occupied orbi­
tal of B). 

The study of the interaction between conjugated mol­
ecules forms an important part of the investigation 

of organic reaction mechanisms and of molecular photo­
chemistry. The typical Diels-Alder addition occurs 
most readily between a conjugated system and a dieno-
phile in which the reacting double bond belongs also to a 
conjugated chain. Recently a great amount of interest 
has been focused on intermolecular cycloadditions of 
conjugated systems, whether thermal or photochemical. 
In an adjacent field, the spectral behavior and the struc­
ture of the excimers of aromatic molecules have excited 
the curiosity of physical chemists and organic chemists 
alike. 

The theory of the mechanism of these interactions has 
advanced considerably in the last few years. Among 
the proposals put forward are the following. (1) The 
Diels-Alder reaction2* should be a concerted, but asym-

(1) Research supported in part by National Institutes of Health Grant 
GM-12343. 

metric, addition with one bond closure occurring faster 
than the others.2b Furthermore the preference for 
endo rather than exo adducts appears due to a secondary 
interaction between the /3' atomic orbital, adjacent to 
the reacting double bond, and a /3 orbital of the diene.3 

(2) Concerning cycloadditions in general, thermal 
reactions should proceed when m + n, the total number 
of T electrons in the newly formed ring, is of the form 
Aq + 2, whereas photochemical reactions will be allowed 
for m -f n = Aq.* Exceptions to these selection rules 
should occur only via multistep mechanisms. 

(3) Little is known, finally, about the structure of 
excited dimers in solution, although they are often as-

(2) (a) See, for instance, A. Wasserraan, "Diels-Alder Reactions," 
Elsevier Publishing Co., New York, N. Y., J. Sauer, Angew. Chem., 79, 
76 (1967); (b) R. B. Woodward and T. Katz, Tetrahedron, S, 70 (1959); 
see also J. A. Berson and A. Remanick, / . Am. Chem. Soc, 83, 4947 
(1961). 

(3) R. Hoffmann and R. B. Woodward, ibid., 87, 4388 (1965). 
(4) R. Hoffmann and R. B. Woodward, ibid., 87, 2046 (1965). 
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sumed to have a planar "sandwich" structure. It has 
been suggested recently that excimers actually have a 
configuration "similar to that of adjacent parallel mole­
cules in the crystal lattice."6 What appears to be cer­
tain, in any case, is that resonance interaction between 
transition dipole moments in the interacting molecules 
(exciton splitting) fails entirely to reproduce the experi­
mental spectral shifts, and that overlap must be intro­
duced explicitly to understand the stability of excimers.6 

For instance, the first-order Davydov splitting cannot 
account for the fluorescence of benzene excimers in 
solution ;6e the shift of dimer singlet energies is far too 
small in the zero-overlap approximation. Similar re­
sults are obtained for solutions of naphthalene, anthra­
cene, pyrene, and perylene.6b Overlap is now believed 
to be an essential feature.6b,d,g 

One way in which overlap can be introduced is to mix 
molecular exciton states with charge-resonance states by 
configuration interaction,6b'c,e but a molecular orbital 
wave function is equivalent to a mixture of excitation-
resonance and charge-resonance wave functions. Thus 
a direct molecular orbital approach, including all ir 
electrons of the two systems, may be a more adequate 
method for calculating the energies and spectral shifts 
of these dimers.6a'd,f Recent experimental results7 

which emphasize the importance of the charge-reso­
nance component point in the same direction. 

At present the only available molecular orbital ap­
proach which is general enough to be applied to the 
study of all such interactions is Hoffmann's "extended 
Huckel theory."8 For a single molecule this simple 
but powerful theory includes all electrons, both TV and 
<r, in a one-electron treatment in which the complete 
secular determinant, with overlap included, is diagonal-
ized. There is no difficulty, in principle, in extending 
this treatment to the interaction of two molecules (con­
sidered as one composite system) with overlapping 
orbitals. This has been performed by Hoffmann him­
self on butadiene plus ethylene,4 by Chestnut, et ah, on 
the benzene excimer,6d by Polak and Paldus on ethylene 
dimers,6f and recently by Herndon and Hall on various 
Diels-Alder additions.9 However, the numerical resolu­
tion of a large secular equation does not provide any 
information on the important atom-atom or orbital-
orbital interactions, nor on the interaction energy as a 
function of the various atomic overlaps. It is difficult, 
without repeating the entire diagonalization at many 
different interatomic distances, to establish whether a 
given bond closure is more favorable than another one, 
and whether a given reaction must proceed symmetrically 
or not. Furthermore for very large molecules, the 
secular determinant procedure itself becomes unwieldy. 

(5) R. L. Barnes and J. B. Birks, Proc. Roy. Soc. (London), A291, 
570 (1966). 

(6) (a) J. Koutecky and J. Paldus, Collection Czech. Chem. Commun., 
27, 599 (1962); (b) J. N. Murrell and J. Tanaka, MoI. Phys., 7, 363 
(1964); (c) T. Azumi andS. P. McGlynn,/. Chem.Phys.,41,1131 (1964); 
42, 1675 (1965); T. Azumi and H. Azumi, Bull. Chem. Soc. Japan, 
39,1829(1966); 40,279(1967); (d) D. B. Chestnut, C. J. Fritchie, and 
H. E. Simmons, / . Chem. Phys., 42, 1127 (1965); (e) M. T. VaIa, I. H. 
Hillier, S. A. Rice, and J. Jortner, ibid., 44, 23 (1966); I. Hillier, 
L. Glass, and S. A. Rice, ibid., 45, 3015 (1966); (O R. Polak and 
J. Paldus, Theoret. Chim. Acta, 4, 37 (1966); M. G. Sucre and A. Tallet, 
ibid., 7, 277 (1967); (g) see, however, J. B. Birks, Chem. Phys. Letters, 
1, 304 (1967). 

(7) E. A. Chandross and J. Ferguson, J. Chem. Phys., 45, 397 (1966). 
(8) R. Hoffmann, ibid., 39, 1397 (1963); for a similar theory, see 

J. A. Pople and D. P. Santry, MoI. Phys., 7, 269 (1963). 
(9) W. C. Herndon and L. H. Hall, Theoret. Chim. Acta, 7, 4 (1967). 

The interaction of two pyrene molecules requires the 
resolution of a 132 X 132 determinant for each dimer 
configuration when there is no plane of symmetry al­
lowing for its factorization. One is then obliged to con­
sider only highly symmetric configuration of approach4 

or to restrict the number of electrons in the calculation.9 

Our purpose in this paper is to try and develop a 
theory which provides explicit expressions for the inter­
action energy of two conjugated molecules as a function 
of the various atomic orbital overlaps (a reaction sur­
face of sorts). Such a theory should provide insight 
into the important orbital interactions and should allow 
ready calculation of reaction paths. The essential 
features of the proposed theory are as follows. 

(1) The wave functions are built out of "intermolec-
ular" orbitals covering the entire system of interacting 
molecules. As we have already pointed out, for excited 
states a molecular orbital wave function is equivalent to 
a mixture of exciton and charge-resonance wave func­
tions. One-electron energies will therefore be similar 
to those obtained in procedures6b'c,e which use such a 
mixture. 

The Hamiltonian is an effective one-electron Hamil-
tonian. Two-electron energies, such as the weak ex­
citon stabilization energy in excimers, can be obtained 
through a configuration interaction calculation. Intro­
duction of explicit two-electron terms in the Hamiltonian 
will be required if large charge-charge interactions are 
present. 

(2) The molecular orbitals and experimental energies 
of the separate molecules are chosen as starting point. 
We therefore make use of what is known about the 
separate molecules and seek only the small changes 
brought about by the interaction. 

(3) Perturbation theory is used to determine the 
changes in the molecular orbitals and in the energies of 
states. 

(4) Expansion in powers of the overlap allows for 
explicit analytical energy expressions which are numeri­
cally tractable. 

The results of such calculations should be no different 
from those of a numerical "extended Hiickel"8 or similar 
calculation. However the calculations are much less 
elaborate and the effects involved should be much more 
transparent. In particular, it will be possible to com­
pare stabilization energies brought about by bond clos­
ures in various configurations of approach. 

In the following and further papers, the theory will be 
applied successively to intermolecular cycloadditions 
and excited complexes of conjugated molecules. An 
attempt will be made to establish the validity of the 
various proposals put forward in this introduction. 
If necessary, new proposals will be put forward. 

Assumptions 
The assumptions are as follows. (1) Both con­

jugated molecules are assumed to have well-
separated bands of a and 7r orbitals. This is known not 
to be strictly true, in particular for the smaller olefinic 
systems such as ethylene,10 but should be a good approxi­
mation for the larger conjugated systems. It is reason­
able to consider that the major interactions will arise 
from the less tightly bound manifold of it orbitals (and -K 

(10) M. B. Robin, R. R. Hart, and N. A. Kuebler, / . Chem. Phys., 44, 
2664 (1966). 
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electrons) on the two molecules, the a bonds acting only 
as a hard core which forbids too close an approach. In­
deed there is yet no indication whatsoever that considera­
tion of the reactant cr electrons is necessary to describe 
aromatic excimer formation or the incipient steps of 
cycloadditions. It is not unreasonable to assume that 
significant rehybridization takes place only after the 
course of intermolecular addition or complexing has 
been determined by the initial overlap of p orbitals. 
However, special cases will arise where the <r interactions 
are important: photochemical reactions involving ex­
citation to <T antibonding orbitals, or from <r bonding 
orbitals, etc. 

(2) The states of the composite pair are described 
in terms of one-electron orbitals. These intermolecular 
orbitals are due to the interaction, via overlap, of the IT 
molecular orbitals of the two molecules (see, for ex­
ample, Figure 3). 

(3) The total effective one-electron Hamiltonian has 
the usual form defined in Huckel theory 

H = ZKO h=t + v + v' (1) 
i 

Here t is the kinetic energy operator, v some average 
effective potential field of the nuclei and electrons of 
the first molecule, and v' the average potential due to the 
second molecule11 (henceforth the prime notation refers 
to the second molecule). 

The matrix elements between molecular orbitals on 
the same molecule are 

f+Mt dr = Mft + v)tk dr + S4>fl'4>* dr - blkE, 

SW^W ^r = Si*A* + »')**' dr + 

SiMk' dr « Sn>E,> (2) 

where E1 is the one-electron Huckel energy of orbital 
Xp1, and we have used the fact that the potential v' (v) 
is small in the region of the first (second) molecule. 

The matrix element of h between orbitals on the two 
molecules is 

SWW ^ = SWlIt + v)W dr + 

SWh(t + v')W dr + Sh1Kv + £>')&' dr 

or 

h„. = '1,E1S11, + '/,ErSlf + SWh(V + p')&< dr (3) 

where S11' is the overlap integral between TT orbital Xp1 

and w orbital \pr. Since the potential v + v' is large 
only in the region between the two molecules, the matrix 
element 

hr = SWh(V + p')&' dr (4) 

can be considered to represent the interaction energy 
between an electron in Ip1 and an electron in W- It 
might be tempting to write SW^W dr = P11' and apply 
ordinary Huckel theory to the two systems considered as 
a supermolecule, neglecting overlap. However, we are 
primarily interested in the change in energy when the 
two molecules come together, and this arises solely from 
the Coulombic interaction potential,12 whereas h con­
tains the kinetic energy. Furthermore we shall see that 

(11) See, for example, L. Salem, "The Molecular Orbital Theory of 
Conjugated Systems," W. A. Benjamin, Inc., New York, N. Y., 1966. 

(12) H. C. Longuet-Higgins, Proc. Roy. Soc, (London), A23S, 
537 (1956). 

explicit neglect of overlap integrals fails to lead to any 
repulsion energy whatsoever. 

(4) The Huckel molecular orbitals of the separate 
systems are expanded in the usual LCAO form (atomic 
orbitals tj>„ 4>T>), This expansion leads to expressions 
involving atomic matrix elements of the overlap and 
interaction energy between the 2p orbitals on the two 
systems 

S „ ' = S<t>r<t>r' d r 

Vrr' = S4>rlh(V + »')&• dr 

The matrix element r)„> is negative (the major effect 
in u + E)' is the attractive nuclear field) and will be 
roughly proportional to the overlap integral S„'. For 
certain quantitative calculations it will be convenient 
to write the proportionality explicitly 

ij„,//3 = kSTr. (6) 

where /3 is the resonance integral in the isolated mole­
cules and k is a dimensionless constant, but all the 
qualitative conclusions are independent of this assump­
tion. 

(5) Several restrictive remarks are in order. To 
neglect explicit Coulombic repulsion terms e2/r12 in the 
interaction between the molecules has several important 
consequences, (a) The Interaction between net charges 
on the two systems is neglected; this prohibits the 
prediction of meaningful reaction paths for highly polar 
molecules, (b) The "first-order" energy of interac­
tion (with l/R3 behavior) between an excited molecule 
and an identical partner in its ground state is neglected. 
The corresponding exciton stabilization energy, how­
ever, is now well known to give only small energies, far 
too weak generally to explain excimer formation in solu­
tion.6 In the present theory the exciton stabilization 
can be accounted for, if necessary, through a configura­
tion interaction calculation. 

(c) The theory does not distinguish between the 
/rtteraolecular contributions to singlet and triplet 
energies. The over-all energies of the singlet and triplet 
corresponding to a given one-electron excitation are 
different, however, because we use distinct experimental 
energies at infinite separation. This is somewhat 
equivalent to neglecting intermolecular correlation vs. 
intramolecular correlation. Some justification is pro­
vided by the helium-helium system.'3 There the energy 
curves for the lowest excited singlet and triplet are 
nearly parallel. 

(1Su+) re = 1.040 A De = 3.07 eV 

(3Su+) r« = 1.045 A Dt = 2.62 eV 

Note also that single configurations built out of mo­
lecular orbitals will not, in general, correlate correctly 
with some separate-molecule state at infinite distances. 
To obtain this correlation correctly, it is necessary to 
mix in other configurations. Hence the theory is valid 
only at distances which are not too large. 

(6) The crucial assumption of the theory concerns 
the atomic orbital overlap integral SrT>. All S„'s are 
taken to be small compared with unity (i.e., ^0.2). We 
shall now show that this surprising assumption is par­
ticularly justified for the interaction between conjugated 
molecules. They come together with as little inter-

(13) M. L. Ginter, J. Chem. Phys., 42, 561 (1965). 
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Figure 1. Approach of two conjugated molecules. 

Figure 2. (2po-, 2p<r) overlap between carbon orbitals. 

ference as possible between the cr(CH, CC) cores on 
either side, to avoid having a very large repulsion. Thus 
the carbon 2p orbitals, which are sticking out from each 
molecule, can overlap significantly. The general ten­
dency then for the molecules is to come together with 
their planes roughly parallel and opposed (Figure 1). 
Such an approach is accepted for the Diels-Alder reac­
tion and must occur in most concerted cycloadditions. 
The carbon 2p orbitals are then brought approximately 
into a 'V- type overlap. 

Now the "<r" overlap S between two "end-to-end" p 
orbitals has a very particular behavior, as shown in 
Figure 2. Here the overlap integral has been calculated 
between two SCF orbitals for the 5S valence-state of 
carbon.14 As the orbitals are brought together, the 
integral first increases, as would be expected, but then 
levels off and starts decreasing after reaching a maximum 
value of 0.270. At the distance of 1 A the overlap 
integral is zero! The reason for this behavior is appar­
ent from a consideration of the orbital lobes. At large 
distances only the two lobes of same positive sign over­
lap, and 5* increases as the orbitals come closer, but, at a 
distance 2.5 A, the positive lobe of one orbital starts 
overlapping the negative lobe of the other (and con­
versely). Therefore 5 increases less and less, until it 
reaches a maximum at 1.74 A. As the distance de­
creases even further, the overlap becomes more and 
more "negative," reaching the value —1.00 when the 
two nuclei coincide. 

It is clear that in the significant range of distances 
(2.5-3.5 A), where the core repulsive wall is small, the 
overlap is smaller than 0.2. Only when the angle be­
tween the molecular planes is large may the overlap be 
somewhat greater. (In the extreme case of a 90° angle, 

(14) R. B. Hermann, J. Chem. Phys., 42, 1027 (1965). A similar 
curve can be found in J. D. Roberts, "Molecular Orbital Calculations," 
W. A. Benjamin, Inc., New York, N. Y., 1962, p 30. 

* < " " > YK 

' ^ N " ' 

. ^ - ^ — ^ 

^ - * m — " 
Figure 3. Interaction between degenerate pairs of orbitals be­
longing to identical molecules. 

the overlap integral between two positive half-lobes at 
right angles might at very best reach a slightly larger 
value than the maximum for positive lobes pointing at 
each other.) 

(7) Except in exceptional cases, only those matrix 
elements r\„> and Srr>, between orbital <j>r and its nearest 
neighbor <j>r> on the opposite molecule, are conserved. 
Exceptions will arise when three atomic centers interact 
mutually. 

Under these conditions we can develop expressions 
for the absolute ir interaction energies of both ground 
and excited states for any configuration of the ap­
proaching molecules. 

The Interaction Energy between Molecules in 
Their Ground States 

Let us begin by supposing that the interacting mole­
cules are identical closed shells with the same pattern of 
Huckel orbital energies. The first effect to consider is 
the "first-order" interaction energy between pairs of 
degenerate orbitals (\plf i/y). As shown in Figure 3, 
each pair of orbitals is split in the usual fashion, giving 
two new (intermolecular) orbitals which correspond to 
a + or — combination of the initial pair. The relative 
position of the + and — orbitals is determined by the 
sign of Ijf; for negative /w< the positive combination 
has the lower energy. 

The four electrons initially in \f/j and ^s' n°w have a 
total energy, shown in eq 7, where (2) has been used. 

2 f /_^+^L.y^+^L) d T + 
JW2 + 2S11J \V2 + 2Sj1J 

2 (( ^ L W *!ZJtL ) dr -
JW2 - 2Sjr/ Wl - 2S11J 

<*< +MnVr^y + 

Assumption 6 allows us to expand (7) in powers of 
S11'-,

15 thus (7) becomes, tb second order in Sir 

2(Ej + ErXl + Sj1,*) - AhjrSir = 

2(E1 + E1.) - M111S11 

where (3) and (4) have been used. The quantity 
2(Ej + E1') is simply the energy of the same four elec-

(15) If all Sr,- are small, 5,,. is also small. The maximum value of 
Sjj. should occur if all S„i have their maximum value Smax; then Sn< 
= SmsiSrr/Cjv.C).,/ (see eq 14), which is smaller or equal to 5ma,. 
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trons in the noninteracting molecules. The total inter­
action energy due to the splitting of all degenerate pairs 
of occupied orbitals is then 

EiDt
m = - 4 £ / » * S « ' (8) 

In such a calculation one can distinguish two different 
orders of development: orders of magnitude in the 
overlap integral S11', and orders of "perturbation" in 
the interaction energy 1Ii(V + v') (or hi')- However, 
as the interaction integral hi' contains the overlap 
density t^^y, the "first-order" interaction energy in 
(8) is only second order in the overlap; the destabilizing 
effect of the antibonding electrons is almost com­
pensated by the stabilizing effect of the bonding pair. 
It is therefore necessary to pursue the calculation to 
second order in the perturbing interaction energy (by 
mixing orbitals of different energy) so that all terms of 
order SJ}>

2, in particular those in hj>2, are included. 
The mixing of two orbitals Ip1 and ^y of different 

energy leads to the secular determinant 

E1 — E tijj' — ijjjfJL 

Mjj' — Sjj'E Ej' — E 
= 0 

giving 

£2(1 - S„,') - EiE1 + E1, ISjjiHjjl) + 

E1Ej1 - Hj1,* = 0 (9) 

Only if the energy difference E1, — E1 is large relative 
to the matrix element K11, — S1JiE can we obtain the 
energy root E in the usual perturbation form.I6 

£•/2) = Ej- (H11, — SJfE1)* 
E1, - E1 

(10) 

Here £/2 > is the perturbed orbital energy of \pj. We 
must therefore divide the "second-order" contributions 
into two distinct parts: (1) mixing of i^/occupied) 
with (/'^(occupied) and (2) mixing of ^-/occupied) with 
</v(unoccupied) and of ^/(occupied) with ^(unoccu­
pied). In the first case the energy difference E1, — 
Ej may well be small or of the same order as H11, — 
Sjj,E and we must use (9). In the second case the dif­
ference E1, — Ej is at least equal to the lowest excita­
tion energy of one molecule, ~ 3 eV, which we shall 
assume to be significantly larger than H11, — S1^E. 

For the mixing between occupied orbitals we cal­
culate directly the sum of the new energies of \p} and l/y 
from (9) 

E1^ + £ /« 
Ej + Ej, — ISjj'Hjj, 

Ej + Ej, — ISjj'Ijj, 

where the usual expansion in powers of S11, and (3) have 
been used. Hence the total interaction energy for all 
the electrons is 

(11) 

For the mixing between one occupied orbital ^1 and all 
unoccupied orbitals \pk> of the second molecule, eq 10 
leads to the following interaction energy" shown below. 

(16) Rigorously, eq 10 can be derived from (9) only if (E1. - Ej)1» 
4 (Hjj, — Sjj,Ej)(Hjj, — Sjj,Ej,). Note that the present development 
assumes that the simultaneous mixing of three orbitals is negligible 
i.e., that we need not go to third-order perturbation theory. 

an^(Hlk' - Slk,E}y = ™^(Ilk, + 1U(E11, - Et)Sy)* 
Ek' — E1 

V- Ek, — E1 

The total energy due to this effect is obtained by sum­
ming over all occupied orbitals 

occ unocc 
£i„t(III) = - 2 £ E 

4 b> 

[i»> + 1KE,, - Ej)slk,y 
Ek, — E1 

2gugc[V + 1M^ - Ej,)skl,y (12) 
r k Ek — Ej, 

The combination of (8), (11), and (12) gives an over-all 
interaction energy (eq 13). It is clear that this result is 

OCC OCC 

Eiat = ~^z2J2hi'Sj]' — l^iZ^Ijj'Sjj' — 

occ unoc 
2 ? S Ey 

^ + ~(Ek, - Ej)Sjk,^ -

occ unocc 

2EE 
i' 

'« ' 1. 
t lEk - E1, + 4(£> ~ S'**' I <13> V] 

independent of whether the molecules are identical or 
not. If they are different molecules, with no accidental 
orbital degeneracy, (8) disappears but the summation in 
(11) now includes all occupied j , and all occupied j ' , 
and (13) is still obtained. 

The last step of the calculation is the development of 
the molecular orbitals in a linear combination of atomic 
orbitals, \pi - Ec^<Ar- Hence 

r T* 

Sj1I = z_i2-iClsCj,S'Sss, 
(14) 

where (r, r') and (s, s') are pairs of interacting atoms 
on the two molecules. Since Ec/,<c^s< = 5rv (8 = 

Kronecker symbol), the first two terms of (13) give 

- E E O 7 ^ r V + Pr's'^rs)f>Tr'Sss' 
rr' ss ' 

where pTS is the bond order between atoms r and s of the 
first molecule, and pT,s, is the bond order between atoms 
r' and s' of the second molecule. If we suppose that 
different atoms r and s do not interact with the same 
atom r' or s' (no three-center interactions), this expres­
sion reduces to the contributions from r = s, r' = s'. 

-lllKlr + qrdVrr'Srr' 
r r' 

Here qr is the Hiickel charge density at atom r. Finally, 
therefore 

^int = - E ( ? r + qr')Vrr'Sr, 
rr' 

'(l:clTck,r,7,rT,y 

\Z-,c}rck'T'Srr' ) 

"E„-E, + « « • - * » * 

) ' 
occ unocc 

- 2 E E 
) ' k 

\(Ek-E} 

~(HckrCj'T'r\„'y 
rr' 

_ Ek — E1' 

A.2-iCH.rci'r'STr') 
rr' 

+ 

(15) 

(17) This is a well-known result of perturbation theory: see H. F. 
Hameka, "Advanced Quantum Chemistry," Addison-Wesley Publish­
ing Co., Reading, Mass., 1965, p 75; J. I. Musher and L. Salem, 
/ . Chem. Phys., 44, 2943 (1966). 

Salem J Intermodular Orbital Theory of Interaction between Conjugated Systems 



548 

a—4-<r 
(—) 

<.+h j:>-
(.-h 

V-

*k> 

.& 
i+> 

ff 

*-+ 
(+> 
< — > 
(—)( 

• H' 

(.+> -H-
+1 

Figure 4. Interaction between two identical molecules, one excited 
and one in its ground state. 

Equation 15 gives the interaction energy between two 
conjugated molecules in their ground states. We see 
that it comprises two major terms. (1) The first is a 
repulsive term, — XX<7r + qr>)Vrr'STr>, roughly propor-

rr' 

tional to the square of the overlap and strictly propor­
tional to the 7T charge densities on the interacting atoms. 
This repulsion arises because each conjugated molecule 
has a closed-shell structure in which all the bonding 
orbitals are full.18 The larger the ir charge density qT 
on an atom, the larger the size of the "exclusion shell" 
into which other electrons are forbidden to penetrate. 
(2) The second is an attractive term due essentially to 
the mixing of the occupied orbitals of one molecule with 
the unoccupied orbitals on the other. This attraction 
takes place because conjugated molecules, although 
closed shells from the strict point of view of occupancy of 
bonding orbitals, are also open shells since they possess 
a half-filled band of ir levels. 

Equation 15 therefore illustrates the dual nature of 
conjugated molecules: closed shells, but yet availability 
of low-lying antibonding orbitals. Hence we can under­
stand the great reactivity of these molecules as arising 
from the existence of half-filled bands of T electrons, 
even though the valency shell of each carbon atom is 
full. 

The Interaction Energy When One Molecule Is Excited 
When one molecule is excited, it is necessary to dis­

tinguish the interaction of identical molecules from that 
of different molecules. 

Let us suppose that the interacting molecules are 
identical, and that one molecule is in the excited (singlet 
or triplet) state corresponding to the one-electron (non-
degenerate) excitation \pt -*• ipk. The two possible 
diagrams for the relevant interacting orbitals are shown 
in Figure 4; (a) for Ikk> < 0 and (b) for Ikk, > 0. (We 
can always assume, without loss of generality, an 
arbitrary order for the + , — combination of the lowest 
pair.) We can now calculate the change in interaction 
energy, AEiat, due to the excitation, from the case 

(18) The "atomic" nature of this repulsion is due to the atomic sub­
division which is inherent in Hiickel theory. 

(Figure 2) where both molecules were in their ground 
state. 

AEiu 
Cf i>* ± *v V / ypK ± </v \ 

JWi AvT 

Here the upper sign refers to case a, the lower sign to 
case b, and the excitation energy (Ek — E1) represents 
the change in energy of the noninteracting molecules. 
Developing (16) in the usual way (see previous section) 
and using (3) and (4) we get 

A£int = ±/«'(1 =F Sa.) + /«'d + Sj}) (17) 

But Ijj> is negative and can be written — \Ij}\, and simi­
larly for Ikkt in case a. The change in interaction 
energy can therefore be written, in all cases 

A£int
(I) = - ( | /« . | + |/«-|) + V„>Sti. - IwSa.) (18) 

The major term in eq 18 is the term — (\Ikk] + \l]f\), 
which is first order in the overlap. Essentially, the in­
teraction energy between an excited molecule and a 
ground-state molecule contains a term linear in the over­
lap. This term will be predominant (relative to £int) for 
small values of the intermolecular overlap. 

To (18) we must add the contributions arising from 
the mixing of \[/j and \{/k with orbitals of different energy 
in the second molecule. It is difficult to use (9) here to 
calculate the interaction of \pj with the other occupied 
orbitals (or of tyk with the other unoccupied ones). 
//, however, orbitals \pj and \pk are both well separated 
in energy from all the other orbitals in the molecule,16 

we can apply eq 10 to all the "second-order" mixings. 

A£int
(I> 

_ , (Hj1' — Sjj'EjY ^{Hkj' — Sk]'Ej)2 

any By — Ej Mji Eji — Ek 

[Ij1I+
 ll2(Eji-Ej)Sjjiy 

alii' Ej> — E1 

(*i) 
y[hr+ 1KEj'- Ek)Skjiy 
any Eji — Ek 

(19) 
(^k) 

The first term represents the loss of "second-order" 
stabilization, relative to the situation where both 
molecules are in the ground state, due to the loss of one 
electron in ^ ; and the second term represents the 
additional stabilization due to the electron in ypk. Com­
bining (18) and (19) we get (for identical molecules) 

all ]' 

aiiyL-^r ~ hs 

+ 1U(EjI - E11)S1 «'2] (20) 

Again we must emphasize that this result is true, as 
far as the terms of order S2 are concerned, only if ^1 and 
4>H are well separated from the other molecular orbitals; 
only then will eq 10 be equivalent to 9. 
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If the molecules are different, with no accidental 
degeneracy between Et or Ek and any Ey, eq 18 disap­
pears, and only 19 subsists, where the summations 
are over ally without restriction. The results for AEitlt 
is then eq 20 without the linear term — (\lkk>\ + Ijt>\) 
and where there is no need to specify that the j"s are 
different from; or k. 

There remains to establish the expression for the in­
teraction energy in terms of the atomic matrix elements 
•q and S. We have the simplification 

E(IjJ1S)I' — Ikj'Skj') = EE(cfrcIter's' — 
Mj' TT1 it' 

CkTCks8T's')ri„>S„> = E f o r 2 — CkT
2)l)rr'S„> 

TT' 

The final result for the interaction energy Eint* between 
an excited conjugated molecule and an identical partner 
in its ground state is eq 21. For identical molecules 

Eiat* = Eint + AEiat (21) 

Afint 0 '"*"^ = -(\YjC),CS'T'r\TT'\ + |Ec*rC*V»?rr'l) + 
TT' rr' 

"(HCjrCj'r'VTT'y 
E(CJr' ~ C^rr'Srr' + E 
rr' Mj' 

(*j) 
_ E1' — Ej + 

>U(Ey - EMEcirCfT'Srr.y 

X^ YCUckrCj'T'riTT'y ^ 

£ ^=—— + 1M^ - **)(£ 
(*fc)L &)' ~ ^k 

CicTCj'r'Srr')2 

the linear term is the all-important one, and the other 
terms can often be neglected in searching for the qualita­
tive behavior of an interacting system. For different 
molecules the linear term disappears, and only the 
second, third, and fourth terms of (21), which are 
second order in S, subsist. It is then important to 
check that there is no degeneracy or near-degeneracy 
between \pj, or \pk, and any i/y. The term (c]T

2 — 
ckr

2)yrr'STr' represents the effect of the change in size of 
the exclusion shell around atom r upon excitation. 

Equations 15 and 21 are the fundamental expressions 
which yield the interaction energy of two conjugated 
molecules, whether one is excited or not. The author 
would like to emphasize that, in spite of their apparent 
complexity, these equations are extremely tractable. 
Detailed examples (part II19) will show how little arith­
metical effort goes into the evaluation of the interaction 
energy. 

The Important Case of Interacting 
Alternant Hydrocarbons 

The characteristic properties of alternant hydrocar­
bons11 are familiar to most chemists and we shall not 
dwell on them. Let us assume that the interacting 
molecules are even alternants and see how this affects 
formulas 15 and 21. First the charge density q, is uni­
formly equal to 1. In the second place, let us associate 
with the unoccupied orbitals 

<£* = E * CJT4>T - E 0 C J A 

^k' = ECJ'T'4>T' — E°cj>>'4>» 

(19) L. Salem, J. Am. Chem. Soc, 90, 553 (1968). 

(22a) 

and the conjugate orbitals11 

h = 2>**r + E0Cj^s 

^i' = E*Ci'r'<f>r' + E°Ci's'<t>> 
(22b) 

(No nonbonding orbitals are assumed to be present.) 
In (22) the summations over starred (*) and unstarred 
(°) atoms are separate. Let us also remark that 

Er — Ej = ek> — e} = —{tt> + tj) 

where the e's denote binding energies. We can then 
write, for typical terms of (15), eq 23, where we have 

occ unoccl JECjrCk'T'-nrr'Y 

•2E E ^ J-1 

occ unocc 

2EE 
[ E ( V + c„°)(ciV* - c ,v>„ ' ] 5 

«> + *i' 

(EckrCj'T'Vrr'Y 

-2E E ^1—Y1- = 
occ unocc 

occ unocc I 
, [E(CjT* - Cj,r°)(Cj>r.* + C j v > r r ' l 2 

2 E l k —r- =L (23) 
j ' 3 «;•' + eJ 

employed provisionally the same index (r, r') for starred 
and unstarred atoms. Combination of expressions of 
this type leads to the final equation for the ground-state 
energy (eq 24), where the notation (* ° — °*) represents 

occ occ 

.Eint = —2EvTT'Srr> + EE 
rr' j j> 

(ECJT*CJ'T'*VTT' - E c , s ° c , v V ' V + (*° - °*) 
\ rr' et^ / 

tj + 6j> + 
(«i + <j)\(Ec1T*Cj.r,*STT, -

EcjS°cf>>osss,y + ( • » - °*)]2 

(24) 

a term similar to the one immediately preceding it, but 
with a different ordering of coefficients. 

For the interaction between two identical molecules, 
one of which is excited, there will be two important 
cases. These correspond to the lowest possible excited 
states in conjugated molecules:11 the (singlet or triplet) 
p excited state, corresponding to the transition between 
top occupied (\f/m) and lowest unoccupied (^m+i) 
orbitals, and the (singlet or triplet) a excited state, corre­
sponding to one combination of the degenerate tran­
sitions ^ m - i - * im+i and \{/m -* fm+i. Let us write, 
in the usual manner 

^ m + 2 = E f l r * 0 r ~ E«»°<r>» (25) 

<Am+i = E^r*<t>r — Ebs°4>s (lowest unoccupied orbital) 

^m = EbT*<t>r + E*s°̂ >» (top occupied orbital) 

^m-I = Elr*<t>r + Ea'°<t>> 

Assume first that one molecule is in an excited (singlet 
or triplet) p state. We can then transform (21), in which 
now; = m, k = m + 1. We notice (1) that cm,r

2 = 
c«+i,r2 for all r; (2) that the following relation holds 
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\Z2cJrCj'r'7]rr>\ + Ec* rC*'r"?rr' | = 
I rr' I l rr' 

[E(M + br°XbT,* + bt,°)nr,>\ + 
I rr' [ 

\E(b* - br°)(br>* - br,
a)r,tT> 

I rr' 

(note that |A + B| + |A — B| is equal to the 
larger of the two quantities 2|A| and 2|B|); and (3) that 
the terms in the summation over j ' can be trans­
formed (after separating the contributions from occupied 
and unoccupied./') and combined in a manner similar to 
(23) by using the pairing property. One finds a sum 
involving the interaction of tym with the unoccupied 
orbitals of the second molecule (and ipm+i with the 
occupied ones), and a second sum comprising the inter­
action of l/'m with the occupied orbitals of the second 
molecule (and ^n+1 with the unoccupied ones). The 
final result is shown in eq 26, where the abbreviated 

A£int
(p) = - 2 X the larger of 

/TbSbr'Vrr'+'ZbSbSr,,, 
I rr' ea' 

\ E V ^ ' V ' + Hbs°br>*Vr, 

E 2 

E 2 

CLbSCfSrir,. - ,Eb,0Cj.r^et|,A, + (*° - °*) 
\ rr' ««' / 

«m + tl' 

\(.^m + ^\rzb*c}.7'*s„' -

(Ebt*CfT'*Vrr, + £ V c , v V ' V + (•« + °*)» 
\ rr' as' J^ _ _ _ _ ^ ^ _ 

+ 

Cm — *j' + 

\<Sm " ^[(Lbr*C1^Sn. + Eb1
0C^0S1A' + 

(*° + °*)2"|( (26) 

notation is the same as in eq 24 and where the reader is 
again reminded that the validity of the second-order 
expression (terms in braces) is subject to the level m 
being well separated from all the other ones. 

In the case where the molecules are different, the 
linear term in (26) disappears and the last summation 
then includes all occupied j ' , even j ' = m'. 

If one molecule is in an excited (singlet or triplet) a 
state, the change in interaction energy A.Eint follows 
again simply from (21). It suffices to note that in the 
state 1AO^n-I-* \pm+i- ^n-* im+2) orbital i/<m _!loses 
an electron "one-half of the time" while orbital \pm 
loses an electron the "other half of the time;" similarly 
orbital ^m+i gains an electron one-half of the time and 
\pm+2 gains an electron the other half. The energy 
changes are therefore the same as if "half the time" the 
first molecule was in the state \f/m -+• \pm+i (p state) and 
"half the time" in the state \pm-i -*• \pm+z- In the latter 
case, A£int is given by (26) where the bT coefficients are 
replaced by a„ and tm by «m-i. Hence, over-all eq 27 
obtains. The formulas are rather lengthy, but again, 
even for large systems, the summation over./' is readily 

A£int(o) = 2A£int(p) + the larger of 

( " 2 X 
rr' SB' ' I 

"Z,aSa,°Vr,' + Z A 0 V V ' ! / 2 
i M sr' I/ 

* j (2>*C,vVr' - 2>S
0C,vV'V + (* 0 - °*)2 

-l^\ rr' <£ / 

' ( 6 m _ ! + ij' 

^m-I + «,')[(£0r*C''"*5"' " 5fl'6^'°S„.)» + 

I 1 OCO 

- -£ 

+ 

« m - l — *i' + 
k-x - .,)[(&-•*">*" + §«.•<*,•*.,). + 

( *° _ °*\2 n\ (27) 

evaluated. Note that eq 27 applies equally well if the 
first molecule is in the /3 state corresponding to the 
strongly allowed transition 1M^m-1~»- \pm+1 + ^m-2-»-

Again, if the molecules are different, the linear term 
disappears and last summation includes all occupied/. 

Special care is required if nonbonding orbitals are 
present (see, for instance, the ion plus neutral cyclo-
addition in part II).19 

Summary of Important Equations and General 
Rules of Behavior 

Equations 15 and 21, or 24, 26, and 27 for alternant 
hydrocarbons, as they stand, give the exact energy of 
interaction up to order S2. Equation 24 can be verified, 
for instance, in the simple case of two interacting ethyl­
ene molecules; expansion of the complete four-by-four 
secular determinant for the four interacting molecular 
orbitals and neglect of terms of high order leads to (24). 
All these expressions, furthermore, have the particular 
feature that two similar sums, one with terms in t\„> 
divided by an energy, and one with the same sums but 
involving Sn' and multiplied by 1It times the same energy 
factor, occur in each one of them. 

Let us compare two such sums, for instance 

occ unocc 

and 

•JYClrCk'r'-nrr'"Y 
Y YUsL 1 
i X Er - E1 

oca unocc 1 r _ , - i , 
£ Z fa - E^^'r'Srr'J 

which occur in (15). Since Hiickel orbital energies are 
comprised roughly between a — 2/3 and a + 2/3, an 
average excitation energy is of the order of 2/3. Hence 
the ratio of a term in the first sum to the corresponding 
term in the second sum is 

%l\^s„, - !(£)' (2S, 
Now the ratio r)rr>/Srr> can be estimated by remarking 
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that, if ri„>/Srr> is roughly constant with distance, it 
should be approximatly equal to /3/S0, where S0 is the 
overlap integral between adjacent TT orbitals in benzene 
( ~ 0.25).20 

i\„>IS„> « 4/3 (29) 

A more reliable value for rj„>IS„> is obtained by com­
paring (3), for two isolated carbon p atomic orbitals 

S<t>Mi> d r = aS„- + J}„> (a = S4>Mr d r ) (30) 

with Hoffmann's semiempirical equation8 

1.75 
S4>th4>,'diT = —r-(« + Ci)Sr, (31) 

where a = —11.4 eV. Hence ri„'IS„> = —8.55 eV. 
With the benzene spectroscopic value /3 = — 3 eV for the 
resonance integral11 

ti„>/S„> = 2.85/3 (32) 

For this value of the ratio ij„>/S„>, the term in the first 
sum is still eight times larger than the second.21 It seems 
therefore legitimate, if this calculation is reliable, to ne­
glect the S„<2 terms in comparison with the ?j„<2 terms. 

Under these conditions the energy expressions sim­
plify. We write below the five useful expressions, two 
of which are valid in the general case and three for even-
alternant hydrocarbons. In the latter case, if an arbi­
trary pair of interacting atoms is chosen as belonging 
to the starred (*) set of their respective molecules, then 
the topology of most interactions (see II,19 III) is such 
that only pairs of atoms which are both starred (* *) or 
both unstarred (° °) interact. For alternant hydrocar­
bons, therefore, the formulas below are restricted to this 
type of interaction. 

(A) General Case 

Molecules in their ground states 

Eint = - E ( ^ r + qr')VTr'S„> -

occ unocc (ylCpCk'r'VTT'Y occ unocc I yZc^Cj'r'Vrr' V 

2E T ^ L - 2 E E ^ '-
i k' Ek> — Ej i' * Eic — Ey 

(15a) 
Identical molecules, one of which is excited (Eint* = 
£ i n t + Af1nO 

AE,nt
U~*k) = - (\HCirCi'T'11tr'\ + ITtCkTCK'r'Vrr']) + 

\\rr' I rr' \/ 

(TfCjrCi'r'Vrr'Y 

Ey - E 1 
H(Cp2 - C^rr'Srr* + E ~ 
rr' all j ' 

(HCkrCj'T'-nrr'Y 

^ E E <21a> 
all j ' Zy — Zk 
(**) 

(The linear term in rj„> disappears if the molecules are 
different, with no accidental degeneracy between \p} or 
\pk and any i/y.) 

(20) Note that this relationship can only give an order of magnitude 
for rjrr'ISrr', since 3 contains the kinetic energy, whereas ij does not, 
and since /3 is relative to a pir, rather than a p<r, overlap. 

(21) Note that, for the value of T)rr.jS„> given by (32), second-order 
perturbation theory, as developed previously," is valid. The ratio of a 
typical matrix element ScyrcVr-tj,,., over the energy difference Ek' - Ej 
is no larger than 2.85/3SVr' divided by 0 (the smallest possible excitation 
energy), which is still small for S r r. ~ 0.1. 

(B) Two Even-Alternant Hydrocarbons (* * and ° ° in­
teractions only) 

Molecules in their ground states 

•Eint = ~ 222"I]Tr1SrT' 4" 
rr' 

4EE^ r^rf L (24a) 
i i' ei "T «>' 

Identical molecules, one of which is in excited p(La) 
state 

A£ int
(p) = -2\Zbr*br>*r,n. + Zb.°b.'°V..'\ -

2 E 

{Hb*Cyr'*r\„> - E V c j v V s ' Y 
\ rr' ts' ) 

«m + tj> 

occ(2>*Ci'''*'»"' + 2>.°C,V°1?..'Y 
2E— ~ L (26a) 

«w ~ *]' J 

(The linear term disappears if the molecules are different 
with no accidental degeneracy between Ej or Ek and 
any Ey; the last term breaks down if \pm is not well 
separated from all ^y-) 

Identical molecules, one of which is in excited a(Lb) state 

\..M = U^int(P) - \X,a*°''*^T' + AE i t 

oJTfar*C,'r'*riTT' - X X ° < V S ' V S ' Y 

Efl»*a»'*'7»S'| - T1-
11 ; 1~ -

ss' I j' *m — i~r ty 
occ (J2ar*ct'r'*VrT' + E « » ° ^ V ° » ? M ' Y 

E — L (27a) 
j'(^m-l) « m - l _ *!' 

(Again the linear terms disappear if the molecules are 
different with no degeneracy between Em-\ or Em+i and 
any Ey; the last term breaks down if \pm-i is not well 
separated from all ^y.) 

In all these equations the coefficients cjr are the or­
dinary Hiickel atomic orbital coefficients (br for the top 
bonding orbital, aT for the next-to-top-bonding one) 
and tj the Hiickel binding energies (em, top bonding 
orbital). For a given configuration of the interacting 
molecules, knowledge of these quantities allows the 
numerical calculation of the interaction energy in terms 
of the various overlaps S„> and interaction integrals 
t\„>. The T7rr-'s can also be expressed in terms of 
S„' via (6). In the following work, the parameter k of 
eq 6 is taken equal to 3. 

At the outset, two conclusions emerge from the 
general equations (15a and 21a). (1) In the interaction 
between two molecules in their ground states, the repul­
sion energy term — E(<7r + qT')VTr'S„' is rather uni-

rr' 

formly distributed over pairs of interacting atoms. 
The quantity qT + qT' which multiplies ri,r>S„> will 
always be near 2 so that the coefficient of each i}„>S„> 
will be nearly the same. Whether a given thermal 
reaction is favored or not, and proceeds along a given 
pathway, must therefore depend on the interaction be­
tween top occupied orbitals on one molecule and lowest 
unoccupied orbitals of the other (and conversely). 

Fukui was the first to stress the role of these "frontier 
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Figure 5. Favorable interaction between an excited molecule and 
a different neighbor. 

orbitals" (highest occupied orbital of the diene and 
lowest occupied orbital of the dienophile) in his study of 
Diels-Alder reactivity.22 Fukui has also empha­
sized 2S'24 the importance of a perturbation treatment of 
the interaction between conjugated molecules and has 
developed such a treatment, including both a and •K 
electrons, together with orbital rehybridization, 
but neglecting overlap explicitly. He was thus able to 
confirm or predict the syn or anti character of various 
two-center reactions. 

However, it is clear from eq 15a that the repulsive 
terms due to orbital overlap must be included in a 
quantitative evaluation of interaction energies, and that 
they can possibly influence the course of a reaction: for 
instance, a significant decrease in ir charge density on an 
atom, and hence a decrease in the size of the shell into 
which other electrons are forbidden to penetrate, can 
lead to a significant decrease of its repulsion with other 
atoms.25 

(2) In the interaction between an excited molecule 
(22) K. Fukui in "Molecular Orbitals in Chemistry, Physics, and 

Biology," P.-O. Lbwdin and B. Pullman, Ed., Academic Press Inc., 
New York, N. Y„ 1964, p 573, where an expression very similar to the 
second and third terms of (15a) appears. The same idea is used by R. 
Hoffmann and R. B. Woodward, J. Am. Chem. Soc, 87, 4388 (1965), 
in their study of the endo-exo relationship. 

(23) K. Fukui, Bull. Chem. Soc. Japan, 39, 498 (1966). 
(24) K. Fukui and H. Fujimoto, ibid., 39, 2116 (1966). 
(25) This "size" effect is entirely distinct from any attractive or repul­

sive effects which might arise from the net charge density on the inter­
acting atoms. These two-electron interactions have not been included 
in the theory, although they should be in a more rigorous theory (see 
the discussion of part II19). The size effect observed here is such that two 
atoms with charge density 0.90 will repel less than two atoms with 
charge 1.10, although the Coulombic repulsions are the same. 

(excitation \pj -*• ipu) and a molecule in its ground state, 
two cases must be considered. If the molecules are 
identical,™ the existence of a substantial decrease in the 
interaction energy (AEiat < 0) due to the excitation 
depends essentially on the magnitude of the interaction 
between the orbital \pj which loses the electron and its 
degenerate partner \f/f, and between the orbital ^k which 
gains the electron and its partner, \f/k>. Indeed, the 
interaction energy in the presence of an excited electron 
(Figure 4a, for instance) is smaller than the ground-
state interaction energy by (a) the energy decrease of 
this electron in the intermolecular orbital \j/k + \pk>; 
(b) the energy increase of the "hole" which it leaves in 
the intermolecular orbital xpj — i/y. Mathematically 
these effects are contained in the term — (\J2CITCJ'T'-

rrr 

VTT] + \5LckTck>r>riTT,\) of eq 2la. If the molecules 
rr' 

are different, the interaction energy change is deter­
mined by the second-order terms in (2Ia). In partic­
ular, a photochemical reaction will be favored, via a 
large negative AEiuu if either (1) there is a strong inter­
action between the orbital ^p1 which loses the electron 
and an orbital in the second molecule of neighboring, 
but lower energy, or (2) there is a strong interaction be­
tween the orbital \pk into which the electron jumps and 
an orbital in the second molecule of neighboring, but 
higher, energy. Again these effects will either raise the 
energy of the hole or lower the energy of the excited 
electron (Figure 5), thus providing a substantial de­
crease in interaction energy. In Figure 5 the relevant 
orbitals of the second molecule, i/y and i/v are, respec­
tively, the top occupied and lowest unoccupied orbitals. 
This is very often the case. Otherwise B would have an 
excited state below that of A, and A would in principle 
transfer its excitation energy to B. 
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(26) Or also if the molecules are different but with an accidental 
degeneracy between \j/j or 4>k and some \j/j,. 
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